본문 바로가기

Kyujinpy

(152)
[논문 리뷰] - Product Quantization & Fast Image-Based Localization using Direct 2D-to-3D Matching 보호되어 있는 글입니다.
[LGM 논문 리뷰] Large Multi-View Gaussian Model for High-Resolution 3D Content Creation *LGM를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! LGM github: LGM (kiui.moe)  LGMLGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation Arxiv 2024 Jiaxiang Tang1, Zhaoxi Chen2, Xiaokang Chen1, Tengfei Wang3, Gang Zeng1, Ziwei Liu2 1 Peking University   2 S-Lab, Nanyang Technological University   3 Shanghai AI Lame.kiui.moeContents1. Simple Introduction2. Background Knowledge: Gaussia..
[3D Gaussian Splatting 간단한 논문 리뷰] *Gaussian Splatting에 대한 간단한 논문 리뷰 입니다!*이해를 돕기 위해 수식은 거의 제외했습니다. GS 논문: repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_high.pdf GS github: 3D Gaussian Splatting for Real-Time Radiance Field Rendering (inria.fr) 3D Gaussian Splatting for Real-Time Radiance Field Rendering[Müller 2022] Müller, T., Evans, A., Schied, C. and Keller, A., 2022. Instant neural graphics primitives..
[LRM 논문 리뷰] - LARGE RECONSTRUCTION MODEL FOR SINGLE IMAGE TO 3D *LRM를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! LRM paper: https://arxiv.org/abs/2311.04400 LRM: Large Reconstruction Model for Single Image to 3DWe propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specarxi..
[FNO 논문 리뷰 & 코드 리뷰] - FOURIER NEURAL OPERATOR FOR PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS *FNO를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! FNO paper: [2010.08895] Fourier Neural Operator for Parametric Partial Differential Equations (arxiv.org) Fourier Neural Operator for Parametric Partial Differential EquationsThe classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural oper..
[누적방문수 10만 돌파!!] 드디어!😎😎 블로그를 시작한지 무려 1년 6개월만에 🎉누적방문수 10만을 돌파🎉했다😹😹 (2022. 12 ~ 현재) (달성하기 무척 힘들구만요..ㅎㅎ) 처음 NeRF 논문리뷰글을 시작으로, Transformer, Diffusion, SSL, LLM 등등 되게 다양한 논문들을 올렸던 것 같습니다! 제가 블로그를 시작하게 된 이유는 단 한가지였습니다. "내가 가지고 있는 지식들을 통해서 딥러닝을 입문하거나 공부하시는 분들께 도움이 되고 싶다!"라는 마음만 가지고 시작했습니다.😺 학기중에는 학업과 공동체를 병행해야해서 글을 올리는 주기가 짧아서 마음이 아프지만(?) 방학 때 만이라도 제가 공부한 분야의 논문들을 계속 업로드 하고자 합니다..ㅎㅎ 제 블로그 글을 봐주시는 모든 분께 정말로 감사드리고, 초심 잃지..
[SMPL-X Implementation] KyujinHan/Smplify-X-Perfect-Implementation Github: https://github.com/KyujinHan/Smplify-X-Perfect-Implementation GitHub - KyujinHan/Smplify-X-Perfect-Implementation: Smplify-X implementation. (2024. 03. 18 No Error & Recent version) Smplify-X implementation. (2024. 03. 18 No Error & Recent version) - KyujinHan/Smplify-X-Perfect-Implementation github.com Smplify-X Implementation (recent version) SMPL-X를 예전에 구현한 적이 있었는데, 코드가 다시 날아가서 다시 구현하..
[Diffusion Transformer 논문 리뷰3] - Scalable Diffusion Models with Transformers *DiT를 한번에 이해할 수 있는(?) A~Z 논문리뷰입니다! *총 3편으로 구성되었고, 마지막 3편은 제 온 힘을 다하여서.. 논문리뷰를 했습니다..ㅎㅎ *궁금하신 점은 댓글로 남겨주세요! DiT paper: https://arxiv.org/abs/2212.09748 Scalable Diffusion Models with Transformers We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates o..
[Diffusion Transformer 논문 리뷰2] - High-Resolution Image Synthesis with Latent Diffusion Models *DiT를 한번에 이해할 수 있는(?) A~Z 논문리뷰입니다! *총 3편으로 구성되었고, 2편은 DiT를 이해하기 위하여 LDM를 논문리뷰를 진행합니다! *궁금하신 점은 댓글로 남겨주세요! DiT paper: https://arxiv.org/abs/2212.09748 Scalable Diffusion Models with Transformers We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on..
[Diffusion Transformer 논문 리뷰1] - DDPM, Classifier guidance and Classifier-Free guidance *DiT를 한번에 이해할 수 있는(?) A~Z 논문리뷰입니다! *총 3편으로 구성되었고, 1편은 DiT를 이해하기 위한 지식들을 Preview하는 시간입니다! *궁금하신 점은 댓글로 남겨주세요! DiT paper: https://arxiv.org/abs/2212.09748 Scalable Diffusion Models with Transformers We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates..
[SORA 설명] - OpenAI의 Video Generation AI (기술부분 번역 + 설명 이미지 추가) Technical Report: Video generation models as world simulators (openai.com) Video generation models as world simulators We explore large-scale training of generative models on video data. Specifically, we train text-conditional diffusion models jointly on videos and images of variable durations, resolutions and aspect ratios. We leverage a transformer architecture that oper openai.com SORA: https..
[AutoRAG 소개] - 자동으로 최적의 RAG 파이프라인을 찾아주는 자동화 툴 *RAG를 위한 모든 것! AutoRAG!! AutoRAG github: https://github.com/Marker-Inc-Korea/AutoRAG GitHub - Marker-Inc-Korea/AutoRAG: RAG AutoML Tool - Find optimal RAG pipeline for your own data. RAG AutoML Tool - Find optimal RAG pipeline for your own data. - GitHub - Marker-Inc-Korea/AutoRAG: RAG AutoML Tool - Find optimal RAG pipeline for your own data. github.com MarkrAI RAG Model: https://huggingface.co..

반응형