본문 바로가기

AI

(106)
[다양한 한국어 LLM 벤치마크 평가 코드🍚] - 단 하나의 코드로 N개의 LLM 벤치마크 구현하기 한국어 LLM 벤치마크 올인원 Github Link: https://github.com/Marker-Inc-Korea/KoLLM_Eval GitHub - Marker-Inc-Korea/KoLLM_Eval: 한국어 벤치마크 평가 코드 통합본(?)한국어 벤치마크 평가 코드 통합본(?). Contribute to Marker-Inc-Korea/KoLLM_Eval development by creating an account on GitHub.github.com Gukbap-Series-LLM: https://huggingface.co/collections/HumanF-MarkrAI/gukbap-series-llm-66d32e5e8da15c515181b071 Gukbap-Series-LLM - a HumanF-..
[Gukbap-LLM🍚] - 오픈소스 LLM으로 자체 데이터셋 생성해서 SOTA 달성하기 Gukbap Models🍚HumanF-MarkrAI/Gukbap-Qwen2-7BHumanF-MarkrAI/Gukbap-Mistral-7BHumanF-MarkrAI/Gukbap-Gemma2-9BIntroduction오픈소스 LLM만으로 데이터를 생성하여 GPT-4를 넘어 한국어 최고 레벨을 달성🔥안녕하세요! 오랜만에 LLM 프로젝트로 인사드리는 kyujinpy 입니다🤗작년에 무수히 많은 일들이 있었는데요..! 마커 AI는 자체 데이터셋과 LLM을 만드는데 집중을 하고 있는 중입니다!🤔저희가 가장 심각하게 보고 있는 문제는 바로, 'OpenAI 의존성' 입니다! 오늘날 수많은 여러 SOTA 모델들은 해왜/국내를 모두 포함하여 private model (ChatGPT, GPT4 등)을 활용하여 생성한 ..
RuntimeError: Error(s) in loading state_dict for Model - [LoRA fine-tuning 코드 직접 제작 꿀팁(에러 해결)] - 간혹가다가, fine-tuning할 때 기존 Pre-trained weight에 없는 가중치(LoRA와 같은)를 추가하고 싶을 때 어떻게 해야할까요?? 그냥 model class에 추가하면 새롭게 trainable layers를 추가하면:RuntimeError: Error(s) in loading state_dict for Model:에러를 마주칩니다! 이때 단순하게, load_state_dict에 strict=False를 추가하면 아주 쉽게 해결 완료!self.dit3d.load_state_dict(ckpt['model_state'], strict=False)# DiT-3D 예시
[MoH 논문 리뷰] - MULTI-HEAD ATTENTION AS MIXTURE-OF-HEAD ATTENTION *MoH를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요!  MoH paper: [2410.11842] MoH: Multi-Head Attention as Mixture-of-Head Attention (arxiv.org)  MoH: Multi-Head Attention as Mixture-of-Head AttentionIn this work, we upgrade the multi-head attention mechanism, the core of the Transformer model, to improve efficiency while maintaining or surpassing the previous accuracy level. We show that multi-head attentio..
[Dense Connector 논문 리뷰] - Dense Connector for MLLMs *Dense Connector를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! Dense Connector paper: [2405.13800v1] Dense Connector for MLLMs (arxiv.org)  Dense Connector for MLLMsDo we fully leverage the potential of visual encoder in Multimodal Large Language Models (MLLMs)? The recent outstanding performance of MLLMs in multimodal understanding has garnered broad attention from both academia and industry. In the curre..
[LLaVA-Video 논문 리뷰] - VIDEO INSTRUCTION TUNING WITH SYNTHETIC DATA *LLaVA-Video를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! LLaVA-Video paper: https://arxiv.org/abs/2410.02713 Video Instruction Tuning With Synthetic DataThe development of video large multimodal models (LMMs) has been hindered by the difficulty of curating large amounts of high-quality raw data from the web. To address this, we propose an alternative approach by creating a high-quality synthetic dataset ..
[LLaVA-OneVision 논문 리뷰] - LLaVA-OneVision: Easy Visual Task Transfer *LLaVA-OneVision를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! LLaVA-OneVision paper: https://arxiv.org/abs/2408.03326 LLaVA-OneVision: Easy Visual Task TransferWe present LLaVA-OneVision, a family of open large multimodal models (LMMs) developed by consolidating our insights into data, models, and visual representations in the LLaVA-NeXT blog series. Our experimental results demonstrate that LLaVA-OneVisi..
[LLaVA-NeXT 논문 리뷰] - Improved Baselines with Visual Instruction Tuning *LLaVA-NeXT를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! LLaVA-Next Github: https://github.com/LLaVA-VL/LLaVA-NeXT GitHub - LLaVA-VL/LLaVA-NeXTContribute to LLaVA-VL/LLaVA-NeXT development by creating an account on GitHub.github.com LLaVA-1.5 paper: https://arxiv.org/abs/2310.03744LLaVA-Next (1.6) blog: https://llava-vl.github.io/blog/2024-01-30-llava-next/Contents1. Simple Introduction2. Background Knowl..
[LLaVA 논문 리뷰] - Visual Instruction Tuning *LLaVA를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요!  LLaVA github: https://llava-vl.github.io/ LLaVABased on the COCO dataset, we interact with language-only GPT-4, and collect 158K unique language-image instruction-following samples in total, including 58K in conversations, 23K in detailed description, and 77k in complex reasoning, respectively. Pleasellava-vl.github.ioContents1. Simple Introduction2. Ba..
[DiT-3D or DDPM Code 분석] Github Linkhttps://github.com/DiT-3D/DiT-3D/blob/main/train.py DiT-3D/train.py at main · DiT-3D/DiT-3D🔥🔥🔥Official Codebase of "DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation" - DiT-3D/DiT-3Dgithub.com*매우매우 글이 긴 초장문입니다..!각 코드별로 엄청 상세하게 리뷰했고, 최대한 흐름에 따라서 코드와 수식을 붙여서 설명하였습니다.*DiT-3D 코드를 기반으로 설명하고 있지만, dataloader를 제외한 나머지 리뷰는 2D 기반의 DDPM or Diffusion Transformer 코드의 흐름으로 이..
[MeshAnything 논문 리뷰] - MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers *MeshAnything를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! MeshAnything paper: https://arxiv.org/abs/2406.10163 MeshAnything: Artist-Created Mesh Generation with Autoregressive TransformersRecently, 3D assets created via reconstruction and generation have matched the quality of manually crafted assets, highlighting their potential for replacement. However, this potential is largely unrealized because thes..
[Mamba 논문 리뷰 5] - Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model *Mamba 논문 리뷰 시리즈5 입니다! 궁금하신 점은 댓글로 남겨주세요!시리즈 1: Hippo시리즈 2: LSSL시리즈 3: S4시리즈 4: Mamba시리즈 5: Vision MambaVision Mamba paper: [2401.09417] Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model (arxiv.org)  Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space ModelRecently the state space models (SSMs) with efficient hardware-aw..

반응형