본문 바로가기

Inverse

(5)
[FNO 논문 리뷰 & 코드 리뷰] - FOURIER NEURAL OPERATOR FOR PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS *FNO를 위한 논문 리뷰 글입니다! 궁금하신 점은 댓글로 남겨주세요! FNO paper: [2010.08895] Fourier Neural Operator for Parametric Partial Differential Equations (arxiv.org) Fourier Neural Operator for Parametric Partial Differential EquationsThe classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural oper..
Cramer's Rule and Linear Transformation Cramer's Rule로 linear equation을 푸는 방법! 이걸 보고나서, 매우 놀랐던 기억이 난다..ㅎㅎ Cramer's Rule를 적용해서, Cofactor를 이용한 determinant 계산 방법이다. 시험문제에서 자주 나온다(?) 어떤 특정한 도형의 넓이를 구할 때, 간단히 determinats의 성질을 이용해서 바로 넓이를 계산할 수 있다. 이건 매우 유용한 것 같다. Linear Transformation을 이용하여서 변환된 도형의 넓이를 구하는 방식인데, 매우 간단하다. T(x)라는 transformation function에 이용되는 matrix A가 있다면 위와 같이 detAB로 표현이 되므로, detAB = (detA)(detB) = (detA)*(area of S)가 된다...
Matrix Factorization - LU Factorization * 본 글은 선형대수학 복습을 상기시키기 위한 글로, 설명이 매우 부족할(?) 수 있습니다. L: a unit lower triangular matirx U: echelon form LU factorizaiton을 수행하면 매우 간편하다. LUx = b 연산에서, Ux를 y로 치환한다면, Ly = b와 Ux = y의 방정식을 푸는 꼴이 된다. 알고리즘을 설명하면, 먼저 A를 elementary row operations을 통해서 echelon form으로 만들어준다. 이 form이 U가 된다. 그리고, elementary row operations을 수행하기 위해 곱해준 여러 E matrices를 inverse를 취하면 L이 된다. 밑에 예제를 보면 더욱 이해가 편하다. Elementary row ope..
Characterization of Invertible Matrix * 본 글은 선형대수학 복습을 상기시키기 위한 글로, 설명이 매우 부족할(?) 수 있습니다. 1. A가 Invertible 하다 2. CA = I 3. Ax = 0은 trivial solution이다. (A는 n pivot positions을 가짐) 4. A has n pivot positions. 5. A is row equivalenet to the I. 6. AD = I 7. Ax = b has at least one solution for each b. (unique solution을 가진다고 표현하는게 더 정확) 8. The columns of A span Rn. 9. Linear transformation onto.(n pivor position) 10. The columns of A form..
The inverse of a matrix - Invertible, nonsingular, singular * 본 글은 선형대수학 복습을 상기시키기 위한 글로, 설명이 매우 부족할(?) 수 있습니다. 수업에서 들을 땐, 이 부분이 잘 이해가 안되서 외우는 형식으로 문제를 풀곤 했는데, 복습을 하니 명확하게 이해가 되었다. (Elementary row operations을 왜 하지? 이게 따로 필요한 개념인가? 싶었다) 이 개념은, 뒤에서 나올 LU Factorization에도 매우 유용하다. I라는 identity matrix를 이용해서 표현하는 것인데, A라는 matrix에 수행한 연산을 여러 matrix의 곱으로 표현할 수 있다는 것이 가장 큰 이점이다. 이것이 왜 이점이냐!! 위의 예제를 보면, elementary row operations을 수행하면서 나온 여러 E1, ... ,Ep의 matrix들은 ..

반응형